
1

Smart Cards

A comprehensive tutorial
Michel Kœnig

University of Nice-Sophia Antipolis - ESSI

Michel Koenig Smart cards tutorial 2

Presentation objectives

• Introducing the concepts and
the technology of the smart
cards

• Describing the protocols
between cards and terminals

• Describing how to program
the Java Cards

• Exploring the tools and the
environments provided by the
manufacturers to develop
solutions with smart cards

2

Michel Koenig Smart cards tutorial 3

Presentation content

• Introduction
• ISO7816 Protocol
• Security
• Java Card
• Client side programming
• Tools and environments
• Cyphering
• Conclusion
• Ap 1: Remote Method Invocation
• Ap 2: SIM Card

Introduction

History, technology, standards

3

Michel Koenig Smart cards tutorial 5

Objectives

• In this chapter, we'll
see
– A brief history of the

smart cards
– What is a smart card
– What are the applications

available from the smart
cards

– What kind of
prerequisites are needed
to attend this tutorial

Michel Koenig Smart cards tutorial 6

Brief history

• Early seventies, first patents
– Dr Arimura, R Moreno, M

Ugon
• Early eighties, first field

testing for a memory card
– Phone card in France

• Mid eighties, large scale
introduction of smart cards
in banking system

• Mid nineties, SIM card
introduced in mobile
telephony

4

Michel Koenig Smart cards tutorial 7

What is a smart card

• A plastic card like a credit card with an
embedded micro chip
– With or without visible contacts

• Maybe contactless

• Standardized
– ISO 7816

• Mecanical properties
• Electrical behavior
• Communication protocol

• Contains a software which
– Protects internal data
– Give access to these data in a secure way

Michel Koenig Smart cards tutorial 8

For what applications …

• Payment
• Loyalty systems
• Access systems
• Telephony

– Mobile (GSM …)

• File system
– Health
– Education
– …

5

Michel Koenig Smart cards tutorial 9

Standards
• ISO 7816

– Mecanical level
– Electrical and communication protocol

• GSM 11.11 V6.1.0
– SIM specs

• GSM 11.14 V7.1.0
– SIM Toolkit specs

• GSM 03.19 V1.0.0
– SIM API for Javacard

• Java Card
– Java Card Forum

• EMV
– Europay, Mastercard, Visa

• Open Platform

Michel Koenig Smart cards tutorial 10

Content of this tutorial

• Exploring how a terminal
can communicate with a
smart card

• Discussing about security
• Understanding the

organization of a Java Card
• Learning how to program a

Java Card
• Discovering the tools

available to program, test
and deploy Java Cards

6

Michel Koenig Smart cards tutorial 11

Conclusion

• In this chapter, we have
seen
– A brief history of the

smart cards
– What is a smart card
– What are the applications

available from the smart
cards

– What kind of
prerequisites are needed
to attend this tutorial

ISO7816 Protocol

Physical description, communication
layer, file system

7

Michel Koenig Smart cards tutorial 13

Objectives

• In this chapter, we'll see
– An introduction to the ISO 7816

Protocol
– Some mecanical and physical

aspects of the cards
standardized by ISO 7816

– An extract of the protocol about
the data communication

Michel Koenig Smart cards tutorial 14

Mecanical and Electrical Aspects

• ISO 7816 standard describes
– The physical organisation of the

plastic card
– Indicates the various zones

• I t specifies also the purpose
and the organisation of the
contacts
– For a smart contactful card

• Possible power voltage
– 3V or 5V
– Lower maybe in the future

Clock

8

Michel Koenig Smart cards tutorial 15

Half-duplex serial protocol

• Due to the unique pin dedicated
to input/output, the protocol is
– Serial
– Half-duplex

• Com caracteristics:
– Data: 8 bits
– Parity: even
– Stop: 1 bit

• Speed starting at 9600 Bps

C0 00 00 02 10 00

00 04 90 00

Michel Koenig Smart cards tutorial 16

Terminology

• The smart card reader
powered by
– a PC
– A cash register
– a mobile phone

is called a terminal
• In the standard ISO 7816 it

is called :
– The Card Acceptance Device
– Or CAD

9

Michel Koenig Smart cards tutorial 17

Answer to Reset

• When a card is inserted into
the reader, a micro-switch
signals this event to the
terminal.

• The terminal powers up the
card
– Using a particular protocol

• When it is properly powered,
the card sends back to the
terminal a message called
"Answer to Reset"

Michel Koenig Smart cards tutorial 18

General protocol

• After sending Answer to
Reset, the card waits until
the terminal starts a
communication

• The card never starts a
communication

• The card answers to a demand
coming from the terminal and
waits for the next demand

10

Michel Koenig Smart cards tutorial 19

Application Protocol Data Unit

• The APDUs are the commands sent by
the terminal to the smart card

• The APDU can
– carry parameters to the card
– Expect results from the card

• Card and terminal must synchronize to
– the number of bytes to exchange
– The direction of the exchange

• This is done by the software embedded in
each device

CLA

INS

P1

P2

LC

Michel Koenig Smart cards tutorial 20

Application Protocol Data Unit

CLA

INS

P1

P2

LC

Class of the APDU: one byte which is caracteristic
of the APDU of the application

Instruction: this is the command

P1, P2: two parameters which can be combined
to form a short integer

LC: length of parameters which will be exchanged
between the terminal and the card (from the ter-
minal to the card, or from the card to the terminal)

11

Michel Koenig Smart cards tutorial 21

No parameters exchanged

• LC = = 0
• The card receives the

APDU
• It processes it
• I t returns a status word

– Two bytes

LCP2P1INSCLA

SW2SW1

CAD Card

process

Michel Koenig Smart cards tutorial 22

Parameters sent by the terminal

• LC ≠ 0
• LC indicates the length of the

data in bytes
• The software in the terminal

and the software in the card
must agree on the direction
of the exchange

• The card acknowledges by
sending back the INS byte
– Simpliest case

LCP2P1INSCLA

INS

SW2SW1

Data

CAD Card

process

12

Michel Koenig Smart cards tutorial 23

Data expected by the terminal

• LE ≠ 0
– The 5th byte is called LE

in this case

• The card acknowledges
the APDU by sending
back the INS byte
– Simpliest case

• Data are returned by
the card, followed by
the status word

LEP2P1INSCLA

SW2SW1

CAD Card

INS

Data

process

Michel Koenig Smart cards tutorial 24

Status word

• Status report of the internal
operation done by the card

• 0x9000 means success!
• When different, could indicate

– Denied access
– File not found
– No such CLA or INS expected
– …

0x9000

13

Michel Koenig Smart cards tutorial 25

Conclusion

• In this chapter, we have seen
– An introduction to the ISO 7816

Protocol
– Some mecanical and physical

aspects of the cards
standardized by ISO 7816

– An extract of the protocol about
the data communication

Java Card

Java Card Forum, history of the
versions, programming aspects

14

Michel Koenig Smart cards tutorial 27

Objectives

• In this chapter, we'll see
– The various operating

systems available for the
smart cards

– An introduction to the Java
Card system

– How the Applet are working
– Some classes and methods

provided by the Java Card API

Michel Koenig Smart cards tutorial 28

Operating systems

• Beginning: proprietary
systems
– Only the applications were

standardized
• B0' for french banking system

• Now: multi-application
systems
– MULTOS
– Windows for Smart Card

• Dead
– Java Card

15

Michel Koenig Smart cards tutorial 29

Java Card History

• Early 1996
– First development

• Schlumberger, Bull CP8,
GemPlus, Sun

– Schlumberger's Cyberflex
– Java Card Forum

• Most of the smart cards
manufacturers

• Sun
– As a Java guru

Michel Koenig Smart cards tutorial 30

Why Java in a smart card

• Java is an interpreted
language
– Need a Java Virtual

Machine to run

• Applications could be
portable from one smart
card to another

• Applications run
securely in a "sand box"

• Byte code is small

16

Michel Koenig Smart cards tutorial 31

Is Java for Java Card pure Java?

• No!
• Roughly:

– Basic types restricted to
• Boolean
• Small integers

– Byte
– Short
– Int (optionnal)

– Arrays restricted to one-
dimensionnal arrays

– Limited libraries
• Including java.lang

Michel Koenig Smart cards tutorial 32

Available libraries

• Basically, javacard and
javacardx contain the smart card
API
– framework, security and

crypto
• java.lang is reduced mainly to

the exception definitions
• java.io and java.rmi was

introduced in the last version
– java.io to manage channels
– java.rmi to manage remote

method invocation

17

Michel Koenig Smart cards tutorial 33

How Java works in a smart card

• A Java Virtual Machine is
embedded
– 4 K bytes
– Basic library

• Java Card Runtime
Environment
– In charge of

• Activation of applications
• Low level communication

protocol
• Application downloading

Java Card
Runtime

Environment
Java Virtual

Machine

Java Card API

Applet 1 Applet 2 Applet 3

Michel Koenig Smart cards tutorial 34

Roles of the JCRE

• Downloading a package
• Creating an instance of

an applet
• Selecting an applet
• Transmitting an APDU

to a selected applet
• Managing the

communication protocol
with the CAD

18

Michel Koenig Smart cards tutorial 35

Downloading a package

• Applets must be
encapsulated in a package

• External processes
– Compile the applets
– Verify the bytecode
– Create a jar-like container

• CAP file
– Will be seen later

• Package and applets are
associated an identifier for
future selection

Michel Koenig Smart cards tutorial 36

What is a Java Card Applet

• A java object which is
– Running using the JVM
– Controlled by the JCRE

• The class of this object must
extend the class
javacard.framework.Applet

• The class must overload
several methods

package ePurse;
import javacard.framework.*;
class EPurse extends Applet {

short balance;
public EPurse(){…}
public static void install(…){…}
public boolean select(){…}
public void process(APDU apdu)

{…}
}

19

Michel Koenig Smart cards tutorial 37

Class APDU

• This class provides the basic
features needed to handle the
ISO7816 protocol from the
applet point of view

• It gives access to the internal
buffer dedicated to the
communication

• This buffer can be
– Retrieved by the applet
– Filled up by the applet and sent

to the CAD

CLA INS P1 P2 LC

Michel Koenig Smart cards tutorial 38

Main methods of the APDU

• These methods help to
– Get the internal buffer
– Start receiving data

• Acknowledgement
– Start transmitting data

• Utilities help to
– Transform 2 bytes in a

short and vice versa
– Copy buffers
– Compare buffers

byte buffer[] = apdu.getBuffer();

apdu.setIncomingAndReceive();

short le = apdu.setOutgoing();
apdu.setOutgoingLength(le);
apdu.sendBytes(ISO7816.OFFSET_CDATA,

le);

apdu.setOutgoingAndSend();

20

Michel Koenig Smart cards tutorial 39

Class ISO7816

• This class encapsulates most
of the ISO7816 constants
needed to program the
applets

• Constants are prefixed by
– CLA for class related

constants
– INS for instruction related

constants
– OFFSET for offsets in the

buffer
– SW for status word related

constants

Michel Koenig Smart cards tutorial 40

Lifecycle of an applet

• The JCRE downloads the
package containing the
Applet

• I t calls the static method
install on the Applet

• This method creates an
instance
– Or more

• And register this
instance using an AID

JCRE

Applet

install

instance

ne
w

instance aid

register

21

Michel Koenig Smart cards tutorial 41

Lifecycle of an Applet

• When the instance is
created and registered
it can be called

• The JCRE can
– select
– deselect

the instance
• Can call the instance to
process an APDU

JCRE

Applet

instance

instance aid

select

process

deselect

Michel Koenig Smart cards tutorial 42

Example of an Applet

22

Michel Koenig Smart cards tutorial 43

Michel Koenig Smart cards tutorial 44

Converting the .class file
• The file EPurse.class

must be converted before
downloading

• The downloading format is
called a CAP File

• The tool converter
– Makes the conversion
– Assigns an AID to the

package
– Assigns an AID to the applet

23

Michel Koenig Smart cards tutorial 45

The converter

• The converter can be called using a
configuration file : EPurse.opt

-out EXP JCA CAP
-exportpath C:\jc211\api21
-applet 0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x3:0x1 ePurse.EPurse
ePurse
0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x03 1.0

Applet AID

Package
AID

Package
name

Applet name

Directory where the files will be
exported

Michel Koenig Smart cards tutorial 46

Conversion result

>converter -config epurse.opt

Java Card 2.2 Class File Converter (version 1.1)
Copyright (c) 2000 Sun Microsystems, Inc. All rights reserved.

conversion completed with 0 errors and 0 warnings.

>

24

Michel Koenig Smart cards tutorial 47

Conversion result

Michel Koenig Smart cards tutorial 48

Java Card simulation

• The Toolkit provides tools for
simulation
– jcwde : JavaCard Workstation

Development Environment
• Which simulates the Java Card

– apdutool :
• Which simulates the Java Card

reader

25

Michel Koenig Smart cards tutorial 49

The jcwde tool
• The simulator

– Uses an applet called
"Installer" to download
and install another applet

– Listens on a socket for
incoming APDU

• Port 9025 par défaut

– Manages the protocol
• Throws an exception in case

of trouble

Michel Koenig Smart cards tutorial 50

Running the jcwde tool
• This is done using a configuration file which

indicates
– The applet Installer AID
– The AID of the applet to be downloaded

>jcwde -p 9025 jcwde.app
Java Card 2.2 Workstation Development Environment (version 1.1).
Copyright (c) 2000 Sun Microsystems, Inc. All rights reserved.
jcwde is listening for T=0 Apdu's on TCP/IP port 9á025.

26

Michel Koenig Smart cards tutorial 51

File jcwde.app content

// applet AID
com.sun.javacard.installer.InstallerApplet

0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x08:0x01
ePurse.EPurse

0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x03:0x01

Michel Koenig Smart cards tutorial 52

apdutool
• This tool reads a script which

contains APDU and sends the
APDU to the card
– In fact to the jcwde
simulator

• I t displays the result in
hexadecimal
– On the standard output
– Or in a specified file when using

the option -o

27

Michel Koenig Smart cards tutorial 53

Script example
powerup;
// Select the installer applet
0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01 0x7F;
// begin installer command
0x80 0xB0 0x00 0x00 0x00 0x7F;
// create EPurse
0x80 0xB8 0x00 0x00 0x0c 0x0a 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x0c 0x03 0x1
0x00 0x7F;
// end installer command
0x80 0xBA 0x00 0x00 0x00 0x7F;
// Select EPurse
0x00 0xa4 0x04 0x00 0x0a 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x0c 0x03 0x1 0x7F;
powerdown;

Michel Koenig Smart cards tutorial 54

Output example
>apdutool Essai01.scr
Java Card 2.2 ApduTool (version 1.1)
Copyright (c) 2000 Sun Microsystems, Inc. All rights reserved.
Opening connection to localhost on port 9á025.
Connected.
CLA: 00, INS: a4, P1: 04, P2: 00, Lc: 09, a0, 00, 00, 00, 62, 03, 01, 08, 01, Le
: 00, SW1: 90, SW2: 00
CLA: 80, INS: b0, P1: 00, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
CLA: 80, INS: b8, P1: 00, P2: 00, Lc: 0c, 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 03
, 01, 00, Le: 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 03, 01, SW1: 90, SW2: 00
CLA: 80, INS: ba, P1: 00, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
CLA: 00, INS: a4, P1: 04, P2: 00, Lc: 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 03, 01
, Le: 00, SW1: 90, SW2: 00
>

28

Michel Koenig Smart cards tutorial 55

Other Java Card features

• Many features available
– PIN code management
– Transaction handling using JCSystem

• Possibility to group together a certain
number of actions into a transaction

• Possibility to abort or commit the
transaction

– Shareable applets
– Possibility to have several applets

selected at the same time

Michel Koenig Smart cards tutorial 56

OwnerPIN

• This class helps the developer to protect the access
to some features of the smart card using a PIN code

private OwnerPIN pinCode;

/** Creates a new instance of EPurse */
public EPurse() {

balance = (short)0;
pinCode = new OwnerPIN(EPURSE_PIN_TRY_LIMIT,

EPURSE_PIN_MAX_SIZE);
}

29

Michel Koenig Smart cards tutorial 57

OwnerPIN

• The CAD must validate the PIN code prior to access
the other features

case EPURSE_ADD:
apdu.setIncomingAndReceive();
if(!pinCode.isValidated())

ISOException. throwIt(
ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);

case EPURSE_PIN:
apdu.setIncomingAndReceive();
if(!pinCode.check(buffer,

ISO7816.OFFSET_CDATA, EPURSE_PIN_MAX_SIZE))
ISOException.throwIt(

ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);
break;

Michel Koenig Smart cards tutorial 58

OwnerPIN

• The OwnerPIN proposes a method to unblock a blocked PIN
code (after a TRY_LIMIT unsuccessful attempts)

case EPURSE_UNBLOCK:
pinCode.resetAndUnblock();

30

Michel Koenig Smart cards tutorial 59

OwnerPIN

• The OwnerPIN proposes a method to reset the
validated flag

public boolean select(){
pinCode.reset();

}

Michel Koenig Smart cards tutorial 60

Cryptography

• An entire package is dedicated to
cryptography
– Including creation and management

of keys
• Public and private

– Using several algorithms
• AES, DES, DES3, RSA

• Two main packages
– javacard.framework.security
– javacardx.crypto

31

Michel Koenig Smart cards tutorial 61

Cryptography

Michel Koenig Smart cards tutorial 62

Conclusion

• In this chapter, we have
seen
– The various operating

systems available for the
smart cards

– An introduction to the Java
Card system

– How the Applet are working
– Some classes and methods

provided by the Java Card API

32

Security

Hardware and software aspects

Michel Koenig Smart cards tutorial 64

Objectives

• In this chapter, we'll
see
– An introduction about the

security aspects of the
smart cards

• From a hardware point
of view

• From a software point
of view

33

Michel Koenig Smart cards tutorial 65

Hardware security

• A smart card contains
important data
– It could contain money

• Electronic purses

• I t must be tamper resistant
• "I f you know the attack you

can build the shield"

Michel Koenig Smart cards tutorial 66

The attacks

• X raying the micro-chip
• Measuring the power

consumption variation
during critical APDU
– When the PIN code is

transmitted for example

• Measuring the answer
delay
– To try to predict what

branches in the program
are completed

34

Michel Koenig Smart cards tutorial 67

The shields

• The micro-chip uses an
internal shield to
protect itself against an
X-Ray scanning

• It guarantees the same
delay for both branches
of an alternative
statement

• I t guarantees the same
power consumption in
all cases

Michel Koenig Smart cards tutorial 68

Software attacks and shields

• Data are protected using
cryptography
– Various techniques

• DES, DES3
• RSA
• SHA

• Cryptography is based on
– A public algorithm
– A key

• Private (DES, DES3)
• Public (RSA)

35

Michel Koenig Smart cards tutorial 69

Symmetric Enciphering

SAME KEYBob Alice

Michel Koenig Smart cards tutorial 70

Asymmetric enciphering
Bob’s private key Bob’s Public Key

AliceBob

36

Michel Koenig Smart cards tutorial 71

Signing using asymmetric keys
Bob’s private key Bob’s Public Key

AliceBob

Michel Koenig Smart cards tutorial 72

Certify public key

•Subject (name, company, e-mail …)
•Start Date
•End Date
•Issuer’s subject
•Public Key

X509 Certificate

37

Michel Koenig Smart cards tutorial 73

Certification Authority
•Subject (name, company, e-mail …)
•Start Date
•End Date
•Issuer’s subject
•Public Key

Certificate

Self Signed

•Subject (name, company, e-mail …)
•Start Date
•End Date
•Issuer’s subject
•Public Key

Certificate
•Subject (name, company, e-mail …)
•Start Date
•End Date
•Issuer’s subject
•Public Key

Certificate
•Subject (name, company, e-mail …)
•Start Date
•End Date
•Issuer’s subject
•Public Key

Certificate

Michel Koenig Smart cards tutorial 74

AuthenticationAuthentication

PrivacyPrivacyAuthorizationAuthorization

Integrity Non-repudiation

38

Michel Koenig Smart cards tutorial 75

Protect private key With Smart cards
• The Private key born, live and die inside the card

– Key pair generation
– Secure access
– Cryptographic algorithm process inside the card

• Physically secure
– No Hard drive storage of the private key

• Portable
– No multi-key
– Multiple Device

• Enciphering is done inside the card
– Computer Independent

Michel Koenig Smart cards tutorial 76

Hashing (a.k.a FingerPrint)

8365923334

Hash

• Modifying one bit completely changes the
Hash

•Hash result is completely unpredicatble

• Usual algorithms are MD5 (used for linux
Password storage) or SHA-1

Document

39

Michel Koenig Smart cards tutorial 77

Digital Signature (E mail)

Letter

8365923334

Hash

=?
Identification/
Authentication of
the content of the
letter

X.509X.509

Certificate
Authority

CA Public key
(certificate

checked)

Sender ReceiverKps
Sender's PK

X.509X.509

Kss
Sender's SK

Sender’s private
key & X509
certificate

8365923334 Hash

Digital Signature
8A!G@3&04

X.509X.509
Signing

Letter

Michel Koenig Smart cards tutorial 78

S/MIME Encryption

- generate "symmetric
document key" (PC)

- encrypt "sym document key"
with receiver’s public key

Message

Sender Receiver

Trust Centre

KprX.509X.509

- get certificate of receiver,
verify certificate and extract
public key

- encrypt message with
symmetric key (PC)

Encrypted message$@/!&@#

- unwrap document key
with the receiver’s
private key

- decrypt message
with " sym document key"

Message

40

Michel Koenig Smart cards tutorial 79

Conclusion

• In this chapter, we have
seen
– An introduction about the

security aspects of the
smart cards

• From a hardware point
of view

• From a software point
of view

Client side programming

ISO7816-3 protocol

41

Michel Koenig Smart cards tutorial 81

Objectives

• In this chapter, we'll
see
– The ISO7816 protocol

between the card reader
and the smart card

– The protocols between
the smart card reader
and the PC

• PC/SC
• TLP224
• GBP
• Open Card

Michel Koenig Smart cards tutorial 82

Reader-smart card protocol

• According to the manufacturer,
smart card can support
– Two different power voltages

• 3V and 5V
– Two different ways to transmit

characters
• Direct or inverted

– Two different protocols
• T0, T1

42

Michel Koenig Smart cards tutorial 83

Detecting the voltage

• A complex algorithm is
needed to detect the
voltage of the smart
card
– Try 3V

• I f ATR detected
– Is it good?
– …

ATR?

Départ avec la plus
faible tension

autre classe?

désactiver

délai

tension suivante

oui

ATR valide? oui

Erreur

non

classe
indiquée?

oui

classe
acceptée ?oui non

Désactivation

nonla classe
est A?

non

non

continuer les
opérationsoui

oui

classe A
disponible ?

non

non

continuer les
opérations en

classe A

désactiver

délai

oui

Michel Koenig Smart cards tutorial 84

Interpreting the ATR

• The smart card returns to the reader an
Answer to Reset message

• This ATR indicates
– The data coding convention

• Direct or inverted
– The protocol

• T0 or T1
– Historical bytes

• Various data
– Manufacturer for instance

TCK

T1

TK

TA(3)
TD(2)
TC(2)
TB(2)
TA(2)
TD(1)
TC(1)
TB(1)
TA(1)

T0
TS

43

Michel Koenig Smart cards tutorial 85

T0 protocol

• T0 is a character oriented
protocol
– One character is transmitted after

the other
– Acknowledgement, if needed, is

done after the transmission of
the 5 bytes of the APDU

• T0 limits the length of the data
transmitted
– 32 bytes
– Possibility to chain APDUs

Terminal Card
APDU

BC 20 00 00 04

INS
20

Data
0C 89 FF FF

Michel Koenig Smart cards tutorial 86

T1 protocol

• T1 is a block oriented
protocol
– The entire APDU,

including the extra data,
is transmitted all at once

– Possibility to have
sequences of messages
for long data

1 byte 1 byte 1 byte
NAD PCB LEN

Prologue

0 to 254 bytes 1 or 2 bytes (LRC or CRC)
INF EDC

Information Epilogue

Length

Error detection

Beaucoup de données à envoyer

P Beaucoup E P de donnée E P s à envoyer E

0 0 1 0 1 1 0 0 0PCB

P E P E P E

R(1) R(0)

44

Michel Koenig Smart cards tutorial 87

Classes of APDU and Commands

• I t is virtually possible to
use any value for CLA and
INS in an APDU

• Nevertheless, some values
are reserved by ISO7816
– The constant CLA_ISO7816

is the value of CLA reserved
by ISO

• The next page displays
some values reserved for
INS

Michel Koenig Smart cards tutorial 88

Standard ISO commands

Append record0xE2Read record0xB2

Update record0xDCRead binary0xB0

Put data0xDASelect file0xA4

Update binary0xD6Internal authenticate0x88

Write record0xD2Get challenge0x84

Write binaryOxD0External authenticate0x82

Get data0xCAManage channel0x70

Envelope0xC2Verify0x20

Get response0xC0Erase binary0x0E

CommandValueCommandValue

45

Michel Koenig Smart cards tutorial 89

PC – Reader protocols

• Most of the smart card readers are
connected to a PC through a serial
link
– A new generation use a USB link

• The most common protocols used
are
– TLP224

• Characters oriented
– GBP

• Blocks oriented
• Microsoft had introduced recently a

new protocol: PC/SC
• Open Card had introduced a

protocol based on Java: OCF

Serial COM
TLP224 GBP

PC/SC OCF

Michel Koenig Smart cards tutorial 90

TLP224
• Introduced by Bull CP8
• Encode commands to the smart card

reader
– Power on
– Power off
– Send APDU
– Resend message

• Error

• The message is encapsulated between
– ACK (0x60)
– LN length of message
– LRC

• Bytes are splitted in quartets and
encoded in ASCII

ACK
0x60 0x01

LEN
0x4D

Message
0x2C
LRC

0x36 0x30 0x30 0x31 0x34 0x44 0x32 0x43 0x03

46

Michel Koenig Smart cards tutorial 91

GBP

• Introduced by GemPlus
• Similar to the protocol T=1

– Simplified
• I t is a transport layer which allows the PC to send commands

to the reader

Michel Koenig Smart cards tutorial 92

PC/SC

• PC to Smart Cards
• Introduced by Microsoft

– Helped by smart cards manufacturers

47

Michel Koenig Smart cards tutorial 93

OpenCard

• Offer a portable plateform
to develop client-side
application

• This application could work
– With Java Cards
– Or with other cards

• The technique used is
based on the use of a proxy
– Based on the Remote Method

Invocation technique
– We'll see more about OCF in

the next chapter

Michel Koenig Smart cards tutorial 94

Conclusion

• In this chapter, we have
seen
– The ISO7816 protocol

between the card reader
and the smart card

– The protocols between
the smart card reader
and the PC

• PC/SC
• TLP224
• GBP
• Open Card

48

Remote Method Invocation

Principles and programming techniques

Michel Koenig Smart cards tutorial 96

Objectives

• In this chapter, we'll
see
– What is the Remote

Method Invocation
technique

– How this technique was
introduced for smart card
programming

– How to develop services
using the Open Card
Framework

49

Michel Koenig Smart cards tutorial 97

Principles of RMI - intro

• In a Java program located in a
single machine
– Classes and objects lay in the

same memory storage
– All of them are powered by the

same Java Virtual Machine

• During the call of a method
the control is passed from one
object to the other
– The JVM does the job

Object2

Class2

Java Virtual Machine

Object1

Class1

Michel Koenig Smart cards tutorial 98

Principles of RMI - intro

• In the case of a
distributed program
– Classes and objects do

not lay in the same
memory storage

– They are powered by two
different Java Virtual
Machines

• The direct call of one
method of Object2 by
Object1 is no longer
possible

Object2

Class2

Java Virtual
Machine

Object1

Class1

?

Java Virtual
Machine

50

Michel Koenig Smart cards tutorial 99

Java Virtual Machine

Object1

Class1

RMI Agent

Class2

Interface2Interface2

Java Virtual Machine

RMI Agent

Class Proxy RMI Compiler

Michel Koenig Smart cards tutorial 100

Java Virtual Machine

Object1

Class1

RMI Agent

Object2

Class2

Interface2Interface2

Java Virtual Machine

RMI Agent

Class Proxy RMI Compiler

51

Michel Koenig Smart cards tutorial 101

Java Virtual Machine

Object1

Class1

RMI Agent

Object2

Class2

Interface2Interface2

Java Virtual Machine

RMI Agent

Class Proxy RMI Compiler

Registration

Michel Koenig Smart cards tutorial 102

Java Virtual Machine

Object1

Class1

RMI Agent

Object2

Class2

Interface2Interface2

Java Virtual Machine

RMI Agent

Class Proxy RMI Compiler

Access demand
to Object2

52

Michel Koenig Smart cards tutorial 103

Java Virtual Machine

Object1

Class1

Proxy

RMI Agent

Object2

Class2

Interface2Interface2

Java Virtual Machine

RMI Agent

Class Proxy RMI Compiler

Create

Michel Koenig Smart cards tutorial 104

Java Virtual Machine

Object1

Class1

Proxy

RMI Agent

Object2

Class2

Interface2Interface2

Java Virtual Machine

RMI Agent

Class Proxy RMI Compiler

53

Michel Koenig Smart cards tutorial 105

RMI for the Java Card

• The application classes reuse
the same production
environment as in Java Standard
case
– Use base class CardRemoteObject

for implementation
– Use base interface Remote for

remote interface

Michel Koenig Smart cards tutorial 106

Extra software needed

• Java Card RMI needs
extra software to work
– One part on the card

itself
– One part on the terminal

• Open Card Framework
was choosen by Sun as
a reference
implementation

54

Michel Koenig Smart cards tutorial 107

Example: Applet-side
interface Purse

package com.sun.javacard.samples.RMIDemo;

import java.rmi.*;
import javacard.framework.*;

public interface Purse extends Remote{

public short getBalance() throws RemoteException;
public void debit(short m) throws RemoteException, UserException;
public void credit(short m) throws RemoteException, UserException;

}

No difference with standard
Java RMI

Michel Koenig Smart cards tutorial 108

Example: Applet-side (1)
implementation EPurseImpl

package com.sun.javacard.samples.RMIDemo;

import javacard.framework.UserException;
import javacard.framework.Util;
import javacard.framework.service.CardRemoteObject;
import java.rmi.RemoteException;

public class PurseImpl extends CardRemoteObject implements Purse {

private short balance = 0;

public PurseImpl() {
super(); // export it

}

This is the main difference
with standard Java RMI

55

Michel Koenig Smart cards tutorial 109

Example: Applet-side (2)
implementation EPurseImpl
public void credit(short m) throws RemoteException, UserException {

if(m<=0) UserException.throwIt(BAD_ARGUMENT);
balance +=m;

}
public void debit(short m) throws RemoteException, UserException {

if(m<=0) UserException.throwIt(BAD_ARGUMENT);
balance -=m;

}
public short getBalance() throws RemoteException {

return balance;
}

}

Michel Koenig Smart cards tutorial 110

Example: Applet-side (1)
installing applet
package com.sun.javacard.samples.RMIDemo;

import java.rmi.*;
import javacard.framework.APDU;
import javacard.framework.ISOException;
import javacard.framework.UserException;
import javacard.framework.Util;
import javacard.framework.service.*;

public class PurseApplet extends javacard.framework.Applet {
private Dispatcher disp;
private RemoteService serv;
private Remote purse;

A service knows how to
process all incoming APDU

A dispatcher glues together
all the services and
dispatches APDU to services

56

Michel Koenig Smart cards tutorial 111

Example: Applet-side (2)
installing applet
public PurseApplet() {

purse = new PurseImpl();
disp = new Dispatcher((short) 1);
serv = new RMIService(purse);
disp.addService(serv, Dispatcher.PROCESS_COMMAND);
register();

}
public static void install(byte[] aid, short s, byte b) {

new PurseApplet();
}
public void process(APDU apdu) throws ISOException {

disp.process(apdu);
}

}

Only one service will be
created and attached to
the dispatcher

Add the service which
was just created as a
command processor

Delegate the process
of the apdu to the
dispatcher (then to
the service)

Michel Koenig Smart cards tutorial 112

Example: client-side (1)
code: PurseClient
import opencard.core.service.*;
import examples.purse.*;
import com.sun.javacard.javax.smartcard.rmiclient.*;
import com.sun.javacard.ocfrmiclientimpl.*;
import javacard.framework.UserException;

public class PurseClient extends java.lang.Object {
/** Creates new PurseClient */
public PurseClient() {
}

public static void main(java.lang.String[] argv) {
// arg[0] constains the debit amount
short debitAmount = (short) Integer.parseInt(argv[0]);

Suppose that the
value to be debited
is in the first arg of
the main

57

Michel Koenig Smart cards tutorial 113

Example: client-side (2)
code: PurseClient

try {
// initialize OCF
SmartCard.start();

// wait for a smartcard
CardRequest cr = new CardRequest (CardRequest.NEWCARD,

null,OCFCardAccessor.class);
SmartCard myCard = SmartCard.waitForCard (cr);

// obtain a Java Card RMI Card Accessor CardService
CardAccessor myCS = (CardAccessor)

myCard.getCardService(OCFCardAccessor.class, true);

// create a Java Card RMI connector instance
JavaCardRMIConnect jcRMI = new JavaCardRMIConnect(myCS);

Start the Open Card
Framework

This class could be
considered as the driver of
the card

Michel Koenig Smart cards tutorial 114

Example: client-side (3)
code: PurseClient

// select the Java Card applet
byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
jcRMI.selectApplet(appAID);

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) jcRMI.getInitialReference();

// debit the requested amount
try {

short balance = myPurse.debit (debitAmount);
}catch (UserException jce) {

short reasonCode = jce.getReason();
// process UserException reason information

}

Get the remote
reference of the Purse
(a refernce to the
proxy)

58

Michel Koenig Smart cards tutorial 115

Example: client-side (4)
code: PurseClient

// display the balance to user
}catch (Exception e){

e.printStackTrace();
} finally {

try{
SmartCard.shutdown();

}catch (Exception e){
e.printStackTrace();

}
}

}
}

Michel Koenig Smart cards tutorial 116

Conclusion

• In this chapter, we have
seen
– What is the Remote

Method Invocation
technique

– How this technique was
introduced for smart card
programming

– How to develop services
using Java Card RMI and
the Open Card
Framework

59

Conclusion

Michel Koenig Smart cards tutorial 118

Conclusion

• In this presentation, we have
– Introduced the concepts and the

technology of the smart cards
– Described how to program the

Java Cards
– Explored the tools and the

environments provided by the
manufacturers to develop
solutions with smart cards

60

Appendix 1

SIM cards

SIM Cards

Proactive SIM cards

61

Michel Koenig Smart cards tutorial 121

Objectives

• In this chapter, we'll
see
– The standards around

the SIM card
– What is a proactive SIM

card
– How works a proactive

SIM card

Michel Koenig Smart cards tutorial 122

SIM cards

• Standardized by ETSI for
GSM

• GSM 11.11 V6.1.0
– SIM specs

• Subscriber Identification
Module

• GSM 11.14 V7.1.0
– SIM Toolkit specs

• GSM 03.19 V1.0.0
– Javacard SIM API

62

Michel Koenig Smart cards tutorial 123

Proactives SIM

• Using the SIM Toolkit,
possibility to
– Program the SIM
– Make the SIM card application

driving the phone
• Access to keyboard, display, …

Michel Koenig Smart cards tutorial 124

Internal organization of the SIM

• The SIM contains a
certain number of "files"
grouped into
"directories"

• Terminology:
– Element File: file
– Dedicated file: directory

Root
0x3F00

File
0x2222

Directory
0x2345

File
0x2A34

63

Michel Koenig Smart cards tutorial 125

File hierarchy

Michel Koenig Smart cards tutorial 126

File hierarchy

64

Michel Koenig Smart cards tutorial 127

Proactive SIM

• The ISO7816 standard
does not permit that the
card starts talking first
– A card is waiting for an

APDU and responds
whenit receives the
APDU

• Proactive SIM cards use
a specific status word to
indicate to the Mobile
Equipment that they
want to talk to it

Michel Koenig Smart cards tutorial 128

Proactive protocol

• The Mobile Equipment (the
phone) send a command
(Envelope)
– Containing the menu selection

• The card answers using the
status word 91xx
– Xx is the length of the

command that the SIM wants
to send back to the ME

• The ME sends the command
Fetch to get the command
from the SIM

• …

65

Michel Koenig Smart cards tutorial 129

Allowed commands for the SIM

• The SIM card can
– Display text on the

phone display
– Input data from the

keyboard
– Play tone
– Send a SMS
– Process an incoming SMS
– …

Michel Koenig Smart cards tutorial 130

Conclusion

• In this chapter, we have
seen
– The standards around

the SIM card
– What is a proactive SIM

card
– How works a proactive

SIM card

66

Appendix 2

Logical channels

Michel Koenig Smart cards tutorial 132

Objectives of this appendix

• In this appendix, we'll see
– What is a channel, and what it is for
– The standard ISO7816-4 about channels
– How Java Card 2.2 takes in account this standard
– An example how to use the channels

67

Michel Koenig Smart cards tutorial 133

What is a channel

• Within the smart card,
several applets could be
installed at the same time
– An e-purse
– A loyalty program
– A credit-debit application
– An e-ticket application

• For what we have seen,
only one can be selected
at once

Michel Koenig Smart cards tutorial 134

What is a channel (continued)

• Example : buying a
transportation ticket
using the epurse and
getting loyalty points

• Security must be the
same during all the
operations

• We cannot expect the
same OwnerPIN for
the three applets

68

Michel Koenig Smart cards tutorial 135

What is a channel (continued)

• I t is a virtual link
between the CAD and a
selected element within
the card

• The APDU are
redirected to the
corresponding element
according to the
channel number which
is specified in the APDU

Michel Koenig Smart cards tutorial 136

Channels in ISO7816-4

• ISO7816-4 allows up to 4 channels to be
used
– Channel 0 : default (or basic) channel
– Channels 1, 2, 3

• Two commands are dedicated for channel
handling
– SELECT FILE
– MANAGE CHANNEL

69

Michel Koenig Smart cards tutorial 137

Selecting a channel

• Channel information can be held only with
APDU starting with a CLA byte of the
following type
– 0x0X, 0x8X, 0x9X and 0xAX
– The X nibble is responsible for

• Channel encoding
– Least significant bits

• Secure message encoding

Michel Koenig Smart cards tutorial 138

MANAGE CHANNEL APDU

• This command will not be processed by any
applet from the card

• I t is processed by the underlying operating
system

• It is used to
– Open a channel
– Close a channel

70

Michel Koenig Smart cards tutorial 139

Opening a channel

• The new open channel will be R
• I f Q=0, the default applet will be selected on

channel R
• I f Q≠0, the selected applet on channel Q will

become the current applet selected on
channel R

CLA INS P1 P2 Lc data Le
0x0Q 0x70 0x00 0x00 0x00 0x01

data SW1 SW2
0x0R 0x90 0x00

Michel Koenig Smart cards tutorial 140

Opening a selected channel

• I f Q=0, the default applet will be selected on
channel R

• I f Q≠0, the selected applet on channel Q will
become the current applet selected on
channel R

CLA INS P1 P2 Lc data Le
0x0Q 0x70 0x00 0x0R 0x00 0x00

SW1 SW2
0x90 0x00

71

Michel Koenig Smart cards tutorial 141

Closing a channel

• Channel R will be closed
– Channel R must not be the basic channel

CLA INS P1 P2 Lc data Le
0x0Q 0x70 0x80 0x0R 0x00 0x00

SW1 SW2
0x90 0x00

Michel Koenig Smart cards tutorial 142

Select an applet

• Channel R can be any (opened or unopened)
channel, including the basic channel
– The applet identified by AID will become the selected applet

in channel R
– If channel R is not open, the command open it
– If the channel is open, the command will change the

selected applet in the channel to the one specified

CLA INS P1 P2 Lc data Le
0x0R 0xA4 0x04 0x0R length AID 0x00

SW1 SW2
0x90 0x00

72

Michel Koenig Smart cards tutorial 143

Multiselectable applets

• The same applet can handle
APDU on several channels

• The applet must implement
the
javacard.framework.Mult
iselectable interface
– Must implement methods

select and deselect
• Classpath must include

apduio.jar

Michel Koenig Smart cards tutorial 144

Memory usage

• I f applets A and B from
the same package are
multiselected
– They share the same

CLEAR_ON_DESELECT
memory segment

– This segment will be
clear ONLY when both
applet will be deselected

0 1 2 3

Applet A

Applet B

A B C D

Logical channels

CLEAR ON DESELECT memory segments

73

Michel Koenig Smart cards tutorial 145

Memory usage (continued)

• The applet can work
with an internal two-
fold data structure
– One for the first channel
– One for the second

channel

• This avoid duplicating
code in memory
– Only data is duplicated

0 1 2 3

Applet A

A B C D

Logical channels

CLEAR ON DESELECT memory segments

Michel Koenig Smart cards tutorial 146

Multiselectable interface

• This interface supports two methods :
– public boolean select(boolean allreadySelected);

• Indicates if the applet (or one of the same package) has
already been selected on different channels

• Important to know for initialization process
– public void deselect(boolean stillSelected);

• Indicates if the applet (or one of the same package) remains
selected on different channels

• Important to know for CLEAR_ON_DESELECT memory usage

74

Michel Koenig Smart cards tutorial 147

Multiselectable applet facts

• I f one applet within a package is Multiselectable
– All the applets in the same package must be selectable

• Each time an applet is proposed to be selected
– It must take in account if other applets within the same

package are selected or not
• Same thing for deselection
• During the process of an APDU

– Only one applet is active

Michel Koenig Smart cards tutorial 148

Other features

• Some methods are provided to help
developer to handle correctly the channels
static byte APDU.getCLAChannel();

• According to the selected channel, the applet
can process differently the data

75

Michel Koenig Smart cards tutorial 149

Example

• Suppose a wireless device able to handle
several communications at the same time :
– Phone call
– Far Internet connection
– Local internet connection

• This device needs to activate counters for
each of the connection started and to stop
counters when the connection is held

Michel Koenig Smart cards tutorial 150

Example

• Possible usage :
• Channel 0 is dedicated to the global clock

– To increment started counters
• Channel 1 is for the phone call connection
• Channel 2 is for the far Internet connection
• Channel 3 is for the local Internet connection

76

Michel Koenig Smart cards tutorial 151

Example

• We can use a unique applet which
– Create an array of short counters (3) on selection

on channel 0
– APDU to start, to stop or to get counters differ

only on the channel number
– APDU to increment counters is on channel 0

Michel Koenig Smart cards tutorial 152

Conclusion

• In these appendices, we have seen
– The SIM cards

• Internal organization
• The proactive commands

– The channels
• What is a channel, and what it is for
• The standard ISO7816-4 about channels
• How Java Card 2.2 takes in account this standard
• An example how to use the channels

